C is the center of the circle. Find the area of the segment shown in the figure,
A Asegment = 28.50 u?
B. A segment = 66.00 u?
C. A segment = 78.50 02
D. A segment = 107.00 u?

C is the center of the circle Find the area of the segment shown in the figure A Asegment 2850 u B A segment 6600 u C A segment 7850 02 D A segment 10700 u class=

Respuesta :

Answer: A 28.50 sq. u

Step-by-step explanation:

In the given figure , radius of the circle : r= 10 u

Central angle made by Arc ED: [tex]\theta[/tex]= 90° ( right angle )

Now , the area of the segment is given by :-

Area of segment = Area of sector (ECD) - Area of triangle(ECD) (i)

Formula : Area of right triangle = 0.5 x Base x Height

Area of sector = [tex]\dfrac{\theta}{360^{\circ}}\times\pi r^2[/tex]

Using above formulas in (i) and substituting corresponding values , we get

Area of segment =

[tex]\dfrac{90^{\circ}}{360^{\circ}}\times\pi (10)^2-0.5\times10\times10\\\\=\frac{1}{4}(3.14)(100)-50\\\\=78.5-50=28.5\ sq.u[/tex]

Hence, the correct answer is A 28.50 sq. u