Answer:
1.9 Seconds
Step-by-step explanation:
The equation that models the height of the object is given as:
[tex]h=-16t^2+60[/tex]
The object will land when its height, h(t)=0
[tex]\text{When h(t)=0}\\-16t^2+60=0\\-16t^2=-60\\$Divide both sides by -16\\\dfrac{-16t^2}{-16} =\dfrac{-60}{-16}\\t^2=3.75\\t=\sqrt{3.75} \\t=1.94\:seconds\\\approx 1.9\:seconds $(to the nearest tenth)[/tex]
The object will land after 1.9 seconds.