Respuesta :
Answer:
D
Step-by-step explanation:
Using the addition formula for sine
sin(a + b) = sinacosb + cosasinb
and the exact values
sin([tex]\frac{\pi }{4}[/tex] ) = cos([tex]\frac{\pi }{4}[/tex] ) = [tex]\frac{\sqrt{2} }{2}[/tex] , cos([tex]\frac{\pi }{6}[/tex]) = [tex]\frac{\sqrt{3} }{2}[/tex] , sin([tex]\frac{\pi }{6}[/tex]) = [tex]\frac{1}{2}[/tex]
Note that [tex]\frac{5\pi }{12}[/tex] = [tex]\frac{\pi }{4}[/tex] + [tex]\frac{\pi }{6}[/tex] , thus
sin([tex]\frac{5\pi }{12}[/tex])
= sin([tex]\frac{\pi }{4}[/tex] + [tex]\frac{\pi }{6}[/tex] )
= sin([tex]\frac{\pi }{4}[/tex])cos([tex]\frac{\pi }{6}[/tex] ) + cos([tex]\frac{\pi }{4}[/tex])sin([tex]\frac{\pi }{6}[/tex])
= ( [tex]\frac{\sqrt{2} }{2}[/tex] × [tex]\frac{\sqrt{3} }{2}[/tex] ) + ( [tex]\frac{\sqrt{2} }{2}[/tex] × [tex]\frac{1}{2}[/tex] )
= [tex]\frac{\sqrt{6} }{4}[/tex] + [tex]\frac{\sqrt{2} }{4}[/tex]
= [tex]\frac{\sqrt{6}+\sqrt{2} }{4}[/tex] → D