Respuesta :

Answer:

D

Step-by-step explanation:

Using the addition formula for sine

sin(a + b) = sinacosb + cosasinb

and the exact values

sin([tex]\frac{\pi }{4}[/tex] ) = cos([tex]\frac{\pi }{4}[/tex] ) = [tex]\frac{\sqrt{2} }{2}[/tex] , cos([tex]\frac{\pi }{6}[/tex]) = [tex]\frac{\sqrt{3} }{2}[/tex] , sin([tex]\frac{\pi }{6}[/tex]) = [tex]\frac{1}{2}[/tex]

Note that [tex]\frac{5\pi }{12}[/tex] = [tex]\frac{\pi }{4}[/tex] + [tex]\frac{\pi }{6}[/tex] , thus

sin([tex]\frac{5\pi }{12}[/tex])

= sin([tex]\frac{\pi }{4}[/tex] + [tex]\frac{\pi }{6}[/tex] )

= sin([tex]\frac{\pi }{4}[/tex])cos([tex]\frac{\pi }{6}[/tex] ) + cos([tex]\frac{\pi }{4}[/tex])sin([tex]\frac{\pi }{6}[/tex])

= ( [tex]\frac{\sqrt{2} }{2}[/tex] × [tex]\frac{\sqrt{3} }{2}[/tex] ) + ( [tex]\frac{\sqrt{2} }{2}[/tex] × [tex]\frac{1}{2}[/tex] )

= [tex]\frac{\sqrt{6} }{4}[/tex] + [tex]\frac{\sqrt{2} }{4}[/tex]

= [tex]\frac{\sqrt{6}+\sqrt{2} }{4}[/tex] → D

Answer:

d

Step-by-step explanation: