Respuesta :

Answer:

The maximum height is 55

Step-by-step explanation:

Step 1:  Find the derivative with respect to t

[tex]-5t^2 + 30t + 10[/tex]

[tex]-5*2t + 30[/tex]

[tex]-10t+30[/tex]

Step 2:  Solve for t

[tex]-10t + 30 - 30 = 0 - 30[/tex]

[tex]-10t / -10 = -30 / -10[/tex]

[tex]t = 3[/tex]

Step 3:  Plug in 3 for t in the original equation

[tex]h = -5(3)^2 + 30(3) + 10[/tex]

[tex]h = -5(9) + 90 + 10[/tex]

[tex]h = -45+90+10[/tex]

[tex]h = 45 + 10[/tex]

[tex]h = 55[/tex]

Answer:  The maximum height is 55