Respuesta :

Answer:

The graph is a horizontal hyperbola with vertices at (-5,0) and (5,0).

Step-by-step explanation:

The given formula is

[tex]\frac{x^{2} }{5^{2} } - \frac{y^{2} }{4^{2} } =1[/tex]

Notice that the negative variable is [tex]y[/tex], that means the hyperbola is horizontal. Also, its focal poitns are on the x-axis and have the form [tex](c,0)[/tex] and [tex](-c,0)[/tex].

Remember that the parameter [tex]a[/tex] is always with the positive varible. So,

[tex]a^{2}=5^{2} \implies a=5[/tex]

[tex]b^{2}=4^{2} \implies b=4[/tex]

The asymptotes are

[tex]y=-\frac{b}{a}x[/tex] and [tex]y=\frac{b}{a}x[/tex], replacing parameters, we have

[tex]y=-\frac{4}{5}x[/tex] and [tex]y=\frac{4}{5}x[/tex]

So, the hyperbola is shown in the image attached, there you can observe that the vertices are [tex](-5,0)[/tex] and [tex](5,0)[/tex], which matches the parameter [tex]a[/tex].

Ver imagen jajumonac