Answer:
[tex]z^{\frac{1}{3} }= -0.978 + i\cdot 2.836[/tex], [tex]z^{\frac{1}{3} }= -1.967 - i\cdot 2.265[/tex], [tex]z^{\frac{1}{3} }= 2.945 - i\cdot 0.571[/tex]
Explanation:
The cube root of the complex number can determined by the following De Moivre's Formula:
[tex]z^{\frac{1}{n} } = r^{\frac{1}{n} }\cdot \left[\cos\left(\frac{x + 2\pi\cdot k}{n} \right) + i\cdot \sin\left(\frac{x+2\pi\cdot k}{n} \right)\right][/tex]
Where angles are measured in radians and k represents an integer between [tex]0[/tex] and [tex]n - 1[/tex].
The magnitude of the complex number is [tex]27[/tex] and the equivalent angular value is [tex]1.817\pi[/tex]. The set of cubic roots are, respectively:
k = 0
[tex]z^{\frac{1}{3} } = 3\cdot \left[\cos \left(\frac{1.817\pi}{3} \right)+i\cdot \sin\left(\frac{1.817\pi}{3} \right)][/tex]
[tex]z^{\frac{1}{3} }= -0.978 + i\cdot 2.836[/tex]
k = 1
[tex]z^{\frac{1}{3} } = 3\cdot \left[\cos \left(\frac{3.817\pi}{3} \right)+i\cdot \sin\left(\frac{3.817\pi}{3} \right)][/tex]
[tex]z^{\frac{1}{3} }= -1.967 - i\cdot 2.265[/tex]
k = 2
[tex]z^{\frac{1}{3} } = 3\cdot \left[\cos \left(\frac{5.817\pi}{3} \right)+i\cdot \sin\left(\frac{5.817\pi}{3} \right)][/tex]
[tex]z^{\frac{1}{3} }= 2.945 - i\cdot 0.571[/tex]