Answer:
[tex]\Delta m = 0.171\,kg[/tex]
Explanation:
The process of water adding is described by the First Law of Thermodynamics:
[tex]m_{w,o} \cdot h_{w,o} + \Delta m \cdot h_{w} = (m_{w,o} + \Delta m)\cdot h_{w,f}[/tex]
The amount of additional mass is:
[tex]m_{w,o}\cdot h_{w,o} - m_{w,o}\cdot h_{w,f} = \Delta m\cdot (h_{w,f}-h_{w})[/tex]
[tex]\Delta m = \frac{m_{w,o}\cdot(h_{w,o}-h_{w,f})}{h_{w,f}-h_{w}}[/tex]
Given that water is incompressible, the equation can be further simplified:
[tex]\Delta m = m_{w,o}\cdot \frac{c_{p,w}\cdot (T_{w,o}-T_{w,f})}{c_{p,w}\cdot (T_{w,f}-T_{w})}[/tex]
[tex]\Delta m = m_{w,o}\cdot \left(\frac{T_{w,o}-T_{w,f}}{T_{w,f}-T_{w}} \right)[/tex]
[tex]\Delta m = (0.6\,kg)\cdot \left(\frac{40 ^{\circ}C - 42^{\circ}C}{42^{\circ}C-49^{\circ}C} \right)[/tex]
[tex]\Delta m = 0.171\,kg[/tex]
.