Respuesta :
Step-by-step explanation:
Barrel A : height = 72 inches, radius = 24 inches
Volume of Barrel A is :
[tex]V_A=\pi r^2h\\\\V_A=3.14\times (24)^2\times 72\\\\V_A=130222.08\ in^3[/tex]
Barrel B : height = 36 inches, radius = 48 inches
Volume of Barrel B is :
[tex]V_B=\pi r^2h\\\\V_B=3.14\times (48)^2\times 36\\\\V_B=260444.16\ in^3[/tex]
Taking [tex]\dfrac{V_B}{V_A}[/tex].
[tex]\dfrac{V_B}{V_A}=\dfrac{260444.16}{130222.08}\\\\\dfrac{V_B}{V_A}=2\\\\V_A=\dfrac{1}{2}\times V_B[/tex]
So, the volume of Barrel A is half of the volume of Barrel B.
Answer: the volume of Barrel A is half of the volume of Barrel B
Step-by-step explanation: