Respuesta :
1. Compare the series to the divergent p-series,
[tex]\displaystyle\sum_{n=1}^\infty\frac1{\sqrt n}[/tex]
Use the limit comparison test: we have
[tex]\displaystyle\lim_{n\to\infty}\frac{\frac{\sqrt{n^3+5n-1}}{n^2-\sin(n^3)}}{\frac1{\sqrt n}}=1[/tex]
so the given series also diverges.
Breakdown for the limit: [tex]\sin(n^3)[/tex] oscillates between -1 and 1, so its contribution to the denominator [tex]n^2-\sin(n^3)[/tex] is neglible and we can replace it with [tex]n^2[/tex]. In the square root in the numerator, the [tex]n^3[/tex] term dominates, so [tex]\sqrt{n^3+5n-1}\approx\sqrt{n^3}=n^{3/2}[/tex]. So the given summand is approximated by
[tex]\dfrac{n^{3/2}}{n^2}=\dfrac1{n^{1/2}}=\dfrac1{\sqrt n}[/tex]
2. Let [tex]m=\frac\pi{3n}[/tex], so that [tex]m\to0[/tex] as [tex]n\to\infty[/tex]. Then
[tex]\displaystyle\lim_{n\to\infty}\frac{n^2}{3n+1}\sin\left(\dfrac\pi{3n}\right)=\lim_{m\to0}\frac{\frac{\pi^2}{9m^2}}{\frac\pi m+1}\sin m[/tex]
Recall that [tex]\frac{\sin x}x\to1[/tex] as [tex]x\to0[/tex]. Rewrite the limit as
[tex]\displaystyle\lim_{m\to0}\frac{\frac{\pi^2}9}{m+\pi}\frac{\sin m}m[/tex]
Then [tex]\frac{\sin m}m\to1[/tex], and we're left with
[tex]\displaystyle\lim_{m\to0}\frac{\frac{\pi^2}9}{m+\pi}[/tex]
which is continuous at [tex]m=0[/tex], giving a limit of [tex]\frac\pi9[/tex].