Answer:
f(x) = 0.43 * [tex](x - 3)^{2}[/tex] * [tex](x-1)^{3}[/tex]*(x + 10)
Step-by-step explanation:
We have a 6th degree polynomial f(x)
r = 3 is a root of f with multiplicity 2
r = 1 is a root of f with multiplicity 3
f(-5) = -29721.6
f(-10) = 0
Then: f(x) = a*((x -3)^2 ) * ((x - 1)^3)*(x + 10)
f(-5) = a * (-8)^2 * (-6)^3 * (5) = -29,721.6
a* (64) * (-216)* 5 = -29,721.6
-a*69,120 = -29,721.6
a = -29,721.6/-69,120
a = 0.43
so
f(x) = 0.43 * [tex](x - 3)^{2}[/tex] * [tex](x-1)^{3}[/tex]*(x + 10)