Respuesta :
The only angle type that will still be congruent is:
Vertical
For the sake of easy reference the angles formed have been labelled with numbers (see attachment).
Note:
When a transversal crosses two parallel lines (if the red lines are parallel), the following unique angle pairs would be congruent using the image given as example:
- Alternate interior angles (e.g. [tex]\angle 2 $ and $ \angle 5; \angle 3$ and $ \angle 7[/tex] )
- Alternate exterior angles (e.g. [tex]\angle 4 $ and $ \angle 8; \angle 1$ and $ \angle 6[/tex])
- Corresponding angles (e.g. [tex]\angle 2 $ and $ \angle 6; \angle 3$ and $ \angle 8; \angle 4 $ and $ \angle 7; \angle 1$ and $ \angle 5 )[/tex]
Also note the following angle pairs are not congruent whether or not the two red lines are parallel:
- Linear angle pairs: [tex](\angle 1$ and $ \angle 4; \angle 3$ and $ \angle 2; \angle 1 $ and $ \angle 3; \angle 4$ and $ \angle 2; \angle 5$ and $ \angle 7; \angle 8$ and $ \angle 6; \angle 5 $ and $ \angle 8; \angle 7$ and $ \angle 6)[/tex]
- Same side interior angle pairs: [tex](\angle 2$ and $ \angle 7; \angle 3$ and $ \angle 5; )[/tex]
- Same side exterior angle pairs: [tex](\angle 4$ and $ \angle 6; \angle 1$ and $ \angle 8 )[/tex]
However, if the red lines are said not to be parallel to each other, the only angle pair that will be congruent is:
Vertical angles [tex](\angle 1 $ and $ \angle 2; \angle 3 $ and $ \angle 4; \angle 5 $ and $ \angle 6; \angle 7$ and $ \angle 8)[/tex]
Learn more here:
https://brainly.com/question/2141319