Respuesta :

Answer:

A

Step-by-step explanation:

.

Answer:

B.) [tex]8\sqrt{2}[/tex]

Step-by-step explanation:

Use the 45°-45°-90° theorem:

[tex]hypotenuse=\sqrt{2}*leg[/tex]

Insert the known values:

[tex]16=\sqrt{2}*l[/tex]

Solve for l. Divide both sides by [tex]\sqrt{2}[/tex] :

[tex]\frac{16}{\sqrt{2}}=\frac{\sqrt{2}*l }{\sqrt{2} } \\\\\frac{16}{\sqrt{2} }=l\\\\l=\frac{16}{\sqrt{2} }[/tex]

Rationalize the denominator by multiplying top and bottom by the value of the denominator:

[tex]\frac{\sqrt{2} }{\sqrt{2} } *\frac{16}{\sqrt{2}} \\\\\frac{16\sqrt{2}}{\sqrt{2}*\sqrt{2}} \\\\\frac{16\sqrt{2} }{\sqrt{4} }[/tex]

Simplify the radical:

[tex]\frac{16\sqrt{2} }{2}[/tex]

Simplify division:

[tex]8\sqrt{2}[/tex]

Re-insert into the equation:

[tex]l=8\sqrt{2}[/tex]

Finito.