Respuesta :
Answer:
The percentage loss of the window is [tex]E = 97.3[/tex]%
Explanation:
From the question we are told that
The area of pane of glass is [tex]A = 0.15 m^2[/tex]
The thickness is [tex]d = 5mm = \frac{5}{1000} = 0.005m[/tex]
The thickness of the wall is [tex]D = 0.15m[/tex]
The area of the wall is [tex]a = 10m^2[/tex]
Generally the heat lost as a result of conduction of the window is
[tex]Q_{window} = \frac{j_{glass} * A * (\Delta T) }{d}[/tex]
Where [tex]j_{glass}[/tex] is the thermal conductivity of glass which has a constant value of
[tex]j_{glass} = 0.80 J/(s \cdot m \cdot C^o)[/tex]
Substituting values
[tex]Q_{window} = \frac{ 0.80 * 0.15 * (\Delta T) }{0.005}[/tex]
[tex]Q_{window} = 24 \Delta T[/tex]
Generally the heat lost as a result of conduction of the wall is
[tex]Q_{wall} = \frac{j_{styrofoam} * A * (\Delta T) }{d}[/tex]
[tex]j_{styrofoam}[/tex] s the thermal conductivity of Styrofoam which has a constant value of [tex]j_{styrofoam} = 0.010J / (s \cdot m \cdot C^o)[/tex]
Substituting values
[tex]Q_{wall} = \frac{ 0.010 * 10 * (\Delta T) }{0.15}[/tex]
[tex]Q_{wall} = 0.667 \ \Delta T[/tex]
Now the net loss of heat is
[tex]Q_{net} = Q_{window} + Q_{wall}[/tex]
Substituting values
[tex]Q_{net} = 24 + 0.667[/tex]
[tex]Q_{net} = 24.667[/tex]
Now the percentage loss by the window is
[tex]E = \frac{Q_{window} }{Q_{net}} * 100[/tex]
Substituting value
[tex]E = \frac{24}{24 .667} * 100[/tex]
[tex]E = 97.3[/tex]%