Respuesta :
Answer:
WACC = [ ( Ke * Ve) + Kd(1 - tax rate) Vd]/ ( Ve + Vd)
Ve = $47.2 * 1,000 million = $47,200million
Vd = $10,329million
Kd = 13.03%
Tax rate = 35%
ke = 2% + 0.79(8% - 2%) = 6.74%
WACC = [( 6.74%*47,200) + 13.03%(1 - 0.35) 10329]/ (47200+10329)
= (3181.28 +874.815)/ 57529
= 0.070505 = 7.05%
Explanation:
Answer:
WACC 7.05052%
Explanation:
First, we solve for the cost of capital using CAPM:
[tex]Ke= r_f + \beta (r_m-r_f)[/tex]
risk free = 0.02
market rate = 0.08
premium market = (market rate - risk free) 0.06
beta(non diversifiable risk) = 0.79
[tex]Ke= 0.02 + 0.79 (0.06)[/tex]
Ke 0.06740
Then, we solve for the equity and debt weight using market value:
D 10,329
E 47,200
V 57,529
Equity weight = E/V = 0.8205
Debt Weight = D/V = 0.1795
Then, we can solve for the WACC:
[tex]WACC = K_e(\frac{E}{E+D}) + K_d(1-t)(\frac{D}{E+D})[/tex]
[tex]WACC = 0.0674(0.820455770133324) + 0.1303(1-0.35)(0.179544229866676)[/tex]
WACC 7.05052%