Answer:
109 Employees
Step-by-step explanation:
Total Number of Employees, Universal Set=128
Key: P=Climb poles, T=Cut down trees, W=Splice wire
[tex]n(P\cup T \cup W)'=10\\n(P \cap T \cap W')=25\\n(P' \cap T \cap W)=31\\n(P \cap T \cap W)=18\\n(P' \cap T \cap W')=4\\n(P' \cap T' \cap W)=3[/tex]
Since 9 can do exactly one of the three.
[tex]n(P' \cap T \cap W')+(P' \cap T' \cap W)+n(P \cap T' \cap W')=9\\4+3+n(P \cap T' \cap W')=9\\n(P \cap T' \cap W')=9-7\\$Number of those who climb pole only, n(P \cap T' \cap W')=2[/tex]
[tex]U=n(P \cap T' \cap W')+n(P' \cap T' \cap W)+n(P' \cap T \cap W')+n(P \cap T \cap W')\\+n(P' \cap T \cap W)+n(P \cap T' \cap W)+n(P \cap T \cap W)+n(P\cup T \cup W)'[/tex]
[tex]128=2+3+4+25+n(P' \cap T \cap W)+31+18+10\\128=93+n(P' \cap T \cap W)\\n(P' \cap T \cap W)=128-93=35[/tex]
Number of Employees who can do at least two of the jobs
[tex]=n(P \cap T \cap W')+n(P' \cap T \cap W)+n(P \cap T' \cap W)+n(P \cap T \cap W)\\=25+35+31+18\\=109[/tex]
109 Employees can do at least two of the jobs.
OR
Therefore: Number who can do at least two jobs
=128-(10+9)=109