Zinc is to be electroplated onto both sides of an iron sheet that is 20 cm2 as a galvanized sacrificial anode. It is desired to electroplate the zinc to a thickness of 0.025 mm. It is found that a current of 20 A produces a zinc coating of sufficient quality for galvanized iron. Determine the time required to produce the desired coating, assuming 100 % efficiency.

Respuesta :

Answer:

The time required for the coating is 105 s

Explanation:

Zinc undergoes reduction reaction and absorbs two (2) electron ions.

The expression for the mass change at electrode [tex](m_{ch})[/tex] is given as :

[tex]\frac{m_{ch}}{M} ZF = It[/tex]

where;

M = molar mass

Z = ions charge at electrodes

F = Faraday's constant

I = current

A = area

t = time

also; [tex](m_{ch})[/tex] = [tex](Ad) \rho[/tex] ; replacing that into above equation; we have:

[tex]\frac{(Ad) \rho}{M} ZF = It[/tex]  ---- equation (1)

where;

A = area

d = thickness

[tex]\rho[/tex] = density

From the above equation (1); The time required for coating can be calculated as;

[tex][ \frac{20 cm^2 *0.0025 cm*7.13g/cm^3}{65.38g/mol}*2 \frac{moles\ of \ electrons}{mole \ of \ Zn} * 9.65*10^4 \frac{C}{mole \ of \ electrons } ] = (20 A) t[/tex]

[tex]t = \frac{2100}{20}[/tex]

= 105 s

ACCESS MORE
EDU ACCESS