Respuesta :
Answer:
(a) 95% confidence interval for the population mean is [76.2 , 83.8].
(b) 95% confidence interval for the population mean after change in sample size is [77.32 , 82.68].
(c) The effect of a larger sample size on the margin of error is that the margin of error will increase.
Step-by-step explanation:
We are given a simple random sample of 60 items resulted in a sample mean of 80. The population standard deviation is σ = 15.
(a) Firstly, the pivotal quantity for 95% confidence interval for the population mean is given by;
P.Q. = [tex]\frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } }[/tex] ~ N(0,1)
where, [tex]\bar X[/tex] = sample mean = 80
[tex]\sigma[/tex] = population standard deviation = 15
n = sample of items = 60
[tex]\mu[/tex] = population mean
Here for constructing 95% confidence interval we have used One-sample z test statistics as we know about the population standard deviation.
So, 95% confidence interval for the population mean, [tex]\mu[/tex] is ;
P(-1.96 < N(0,1) < 1.96) = 0.95 {As the critical value of z at 2.5% level
of significance are -1.96 & 1.96}
P(-1.96 < [tex]\frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } }[/tex] < 1.96) = 0.95
P( [tex]-1.96 \times {\frac{\sigma}{\sqrt{n} } }[/tex] < [tex]{\bar X-\mu}[/tex] < [tex]1.96 \times {\frac{\sigma}{\sqrt{n} } }[/tex] ) = 0.95
P( [tex]\bar X-1.96 \times {\frac{\sigma}{\sqrt{n} } }[/tex] < [tex]\mu[/tex] < [tex]\bar X+1.96 \times {\frac{\sigma}{\sqrt{n} } }[/tex] ) = 0.95
95% confidence interval for [tex]\mu[/tex] = [ [tex]\bar X-1.96 \times {\frac{\sigma}{\sqrt{n} } }[/tex] , [tex]\bar X+1.96 \times {\frac{\sigma}{\sqrt{n} } }[/tex] ]
= [ [tex]80-1.96 \times {\frac{15}{\sqrt{60} } }[/tex] , [tex]80+1.96 \times {\frac{15}{\sqrt{60} } }[/tex] ]
= [76.2 , 83.8]
Therefore, 95% confidence interval for the population mean is [76.2 , 83.8].
(b) Now, the sample size has been changed to 120 items.
So, 95% confidence interval for [tex]\mu[/tex] = [ [tex]\bar X-1.96 \times {\frac{\sigma}{\sqrt{n} } }[/tex] , [tex]\bar X+1.96 \times {\frac{\sigma}{\sqrt{n} } }[/tex] ]
= [ [tex]80-1.96 \times {\frac{15}{\sqrt{120} } }[/tex] , [tex]80+1.96 \times {\frac{15}{\sqrt{120} } }[/tex] ]
= [77.32 , 82.68]
Therefore, 95% confidence interval for the population mean after change in sample size is [77.32 , 82.68].
(c) The effect of a larger sample size on the margin of error is that the margin of error will increase that's why the confidence interval in part (b) is narrower than part (a).
The larger the sample size, the lower the margin of error.
What is confidence interval?
Confidence interval shows the range of values for which a random sample might be.
a) The z score of 95% confidence interval is 1.96. sample = 60, mean = 80 and standard deviation = 15. Hence, margin of error (E) is:
[tex]E=z_\frac{\alpha }{2} *\frac{standard\ deviation}{\sqrt{sample\ size} } =1.96*\frac{15}{\sqrt{60} } =3.8[/tex]
The confidence interval = mean ± E = 80 ± 3.8 = (76.2, 83.8)
b) The z score of 95% confidence interval is 1.96. sample = 120, mean = 80 and standard deviation = 15. Hence, margin of error (E) is:
[tex]E=z_\frac{\alpha }{2} *\frac{standard\ deviation}{\sqrt{sample\ size} } =1.96*\frac{15}{\sqrt{120} } =2.68[/tex]
The confidence interval = mean ± E = 80 ± 2.68 = (77.32, 82.68)
The larger the sample size, the lower the margin of error.
Find out more on confidence interval at: brainly.com/question/25779324