A thin rod of length 1.4 m and mass 140 g is suspended freely from one end. It is pulled to one side and then allowed to swing like a pendulum, passing through its lowest position with angular speed 1.09 rad/s. Neglecting friction and air resistance, find (a) the rod's kinetic energy at its lowest position and (b) how far above that position the center of mass rises.

Respuesta :

Answer:

a The kinetic energy is  [tex]KE = 0.0543 J[/tex]

b The height of the center of mass above that position is  [tex]h = 1.372 \ m[/tex]    

Explanation:

From the question we are told that

  The length of the rod is  [tex]L = 1.4m[/tex]

   The mass of the rod [tex]m = 140 = \frac{140}{1000} = 0.140 \ kg[/tex]  

   The angular speed at the lowest point is [tex]w = 1.09 \ rad/s[/tex]

Generally moment of inertia of the rod about an axis that passes through its one end is

                   [tex]I = \frac{mL^2}{3}[/tex]  

Substituting values

               [tex]I = \frac{(0.140) (1.4)^2}{3}[/tex]

               [tex]I = 0.0915 \ kg \cdot m^2[/tex]

Generally the  kinetic energy rod is mathematically represented as

             [tex]KE = \frac{1}{2} Iw^2[/tex]

                    [tex]KE = \frac{1}{2} (0.0915) (1.09)^2[/tex]

                           [tex]KE = 0.0543 J[/tex]

From the law of conservation of energy

The kinetic energy of the rod during motion =  The potential energy of the rod at the highest point

   Therefore

                   [tex]KE = PE = mgh[/tex]

                        [tex]0.0543 = mgh[/tex]

                             [tex]h = \frac{0.0543}{9.8 * 0.140}[/tex]

                                [tex]h = 1.372 \ m[/tex]    

                 

Answer:

a) Kr = 0.0543 J

b) Δy = 0.0396 m

Explanation:

a) Given

L = 1.4 m

m = 140 g = 0.14 kg

ω = 1.09 rad/s

Kr = ?

We have to get the rotational inertia as follows

I = Icm + m*d²

⇒ I = (m*L²/12) + (m*(L/2)²)

⇒ I = (0.14 kg*(1.4 m)²/12) + (0.14 kg*(1.4 m/2)²)

⇒ I = 0.09146 kg*m²

Then, we apply the formula

Kr = 0.5*I*ω²

⇒ Kr = 0.5*(0.09146 kg*m²)*(1.09 rad/s)²

⇒ Kr = 0.0543 J

b) We apply the following principle

Ei = Ef

Where the initial point is the lowest position and the final point is at the maximum height that its center of mass can achieve, then we have

Ki + Ui = Kf + Uf

we know that ωf = 0 ⇒ Kf = 0

⇒ Ki + Ui = Uf

⇒ Uf - Ui = Ki

⇒ m*g*yf - m*g*yi = Ki

⇒ m*g*(yf - yi) = Ki

⇒ m*g*Δy = Ki

⇒ Δy = Ki/(m*g)

where

Ki = Kr = 0.0543 J

g = 9.81 m/s²

⇒ Δy = (0.0543 J)/(0.14 kg*9.81 m/s²)

⇒ Δy = 0.0396 m

ACCESS MORE
EDU ACCESS
Universidad de Mexico