Answer:
The intensity is [tex]I = 0.0003053 \mu W/cm^2[/tex]
Explanation:
From the question we are told
The frequency of the electromagnetic wave is [tex]f = 86.0 Hz[/tex]
The peak value of the electric field is [tex]E_o = 2.30 mV/m = \frac{2.30}{1000 } = 2.30 *10^{-3} V/m[/tex]
Generally the intensity of this wave is mathematically represented as
[tex]I = c * \frac{1}{2} * \epsilon_o E^2_o[/tex]
Where c is the speed of light with value [tex]c = 3 *10^8 m/s[/tex]
[tex]\epsilon_o[/tex] is the permittivity of free space with value [tex]\epsilon _o = 8.85 *10^{-12} C^2 /Nm^2[/tex]
Substituting values into equation for intensity
[tex]I = 3.0 *10^8 * 0.5 * 8.85 *10^{-12} * 2.30*10^{-3}[/tex]
[tex]I = 3.053 *10^{-6} W/m^2[/tex]
Converting to [tex]cm^2[/tex] we divide by 10,000
[tex]I = \frac{3.053 *10^{-6}}{10000} W/cm^2[/tex]
[tex]= 3.053 *10^{-10} W/cm^2[/tex]
[tex]= 0.0003053 *10^{-6} W/cm^2[/tex]
[tex]I = 0.0003053 \mu W/cm^2[/tex]