Provided below are summary statistics for independent simple random samples from two populations. Use the nonpooled​ t-test and the nonpooled​ t-interval procedure to conduct the required hypothesis test and obtain the specified confidence interval.
X1 = 11, S1 = 5, n1 = 25, x2 = 10, S2 = 4, n2 = 20
A) What are the correct hypotheses for a​right-tailed test? α = 0.05
i. Compute the test statistic.
ii. Determine the​ P-value.
B) The 90​% confidence interval is from _______ to ________

Respuesta :

Using the t-distribution, we have that:

a)

  • The null hypothesis is [tex]H_0: x_1 - x_2 \leq 0[/tex].
  • The alternative hypothesis is [tex]H_1: x_1 - x_2 > 0[/tex]

i) The test statistic is t = 0.746.

ii) The p-value is of 0.2299.

b) The 90​% confidence interval is from -1.25 to 3.25.

Item a:

For a right-tailed test, we test if [tex]x_1[/tex] is greater than [tex]x_2[/tex], hence:

  • The null hypothesis is [tex]H_0: x_1 - x_2 \leq 0[/tex].
  • The alternative hypothesis is [tex]H_1: x_1 - x_2 > 0[/tex]

The standard errors are:

[tex]S_{e1} = \frac{5}{\sqrt{25}} = 1[/tex]

[tex]S_{e2} = \frac{4}{\sqrt{20}} = 0.8944[/tex]

The distribution of the difference has mean and standard error given by:

[tex]\overline{x} = x_1 - x_2 = 11 - 10 = 1[/tex]

[tex]s = \sqrt{S_{e1}^2 + S_{e2}^2} = \sqrt{1^2 + 0.8944^2} = 1.34[/tex]

We have the standard deviation for the samples, hence, the t-distribution is used.

The test statistic is given by:

[tex]t = \frac{\overline{x} - \mu}{s}[/tex]

In which [tex]\mu = 0[/tex] is the value tested at the null hypothesis.

Hence:

[tex]t = \frac{\overline{x} - \mu}{s}[/tex]

[tex]t = \frac{1 - 0}{1.34}[/tex]

[tex]t = 0.746[/tex]

The test statistic is t = 0.746.

The p-value is found using a t-distribution calculator, with t = 0.746, 25 + 20 - 2 = 43 df and 0.05 significance level.

  • Using the calculator, it is of 0.2299.

Item b:

The critical value for a 90% confidence interval with 43 df is [tex]t = 1.6811[/tex].

The interval is:

[tex]\overline{x} \pm ts[/tex]

Hence:

[tex]\overline{x} - ts = 1 - 1.6811(1.34) = -1.25[/tex]

[tex]\overline{x} + ts = 1 + 1.6811(1.34) = 3.25[/tex]

The 90​% confidence interval is from -1.25 to 3.25.

A similar problem is given at https://brainly.com/question/25840856

ACCESS MORE
EDU ACCESS