Respuesta :

First of all, you can use

[tex]\sin^2(x)+\cos^2(x)=1 \iff \sin^2(x)=1-\cos^2(x)[/tex]

and the equation becomes

[tex]1-\cos^2(x)=\cos^2\left(\dfrac{x}{2}\right)[/tex]

Now, from the known identity

[tex]\cos^2(x)=\dfrac{1+\cos(2x)}{2}[/tex]

we can half all the angles and we get

[tex]\cos^2\left(\dfrac{x}{2}\right)=\dfrac{1+\cos(x)}{2}[/tex]

So, the equation has become

[tex]1-\cos^2(x)=\dfrac{1+\cos(x)}{2} \iff 2-2\cos^2(x)=1+\cos(x)[/tex]

So, everything comes down to solve

[tex]2\cos^2(x)+\cos(x)-1=0[/tex]

The associated equation

[tex]2t^2+t-1=0[/tex]

has roots

[tex]t=-1,\quad t=\dfrac{1}{2}[/tex]

So, we want one of the following

[tex]\cos(x)=-1,\quad \cos(x)=\dfrac{1}{2}[/tex]

Solve for the associated angles and you're done

ACCESS MORE
EDU ACCESS
Universidad de Mexico