Respuesta :
Answer:
[tex]\displaystyle \int\limits^8_4 {\frac{10}{x^2}} \, dx = \frac{5}{4}[/tex]
General Formulas and Concepts:
Calculus
Integration
- Integrals
Integration Rule [Reverse Power Rule]: [tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]
Integration Rule [Fundamental Theorem of Calculus 1]: [tex]\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)[/tex]
Integration Property [Multiplied Constant]: [tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]
Area of a Region Formula: [tex]\displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx[/tex]
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle f(x) = \frac{10}{x^2} \\\left[ 4 ,\ 8 \right][/tex]
Step 2: Find Area
- Substitute in variables [Area of a Region Formula]: [tex]\displaystyle \int\limits^8_4 {\frac{10}{x^2}} \, dx[/tex]
- [Integral] Rewrite [Integration Property - Multiplied Constant]: [tex]\displaystyle \int\limits^8_4 {\frac{10}{x^2}} \, dx = 10 \int\limits^8_4 {\frac{1}{x^2}} \, dx[/tex]
- [Integral] Integrate [Integration Rule - Reverse Power Rule]: [tex]\displaystyle \int\limits^8_4 {\frac{10}{x^2}} \, dx = 10 \bigg( \frac{-1}{x} \bigg) \bigg| \limits^8_4[/tex]
- Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]: [tex]\displaystyle \int\limits^8_4 {\frac{10}{x^2}} \, dx = 10 \bigg( \frac{1}{8} \bigg)[/tex]
- Simplify: [tex]\displaystyle \int\limits^8_4 {\frac{10}{x^2}} \, dx = \frac{5}{4}[/tex]
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration