Respuesta :
Answer:
[tex]Q = 54.577\,MJ[/tex]
Explanation:
The heat transfer through brick wall is:
[tex]\dot Q = \frac{k\cdot A}{L}\cdot \Delta T[/tex]
[tex]\dot Q = \frac{\left(0.35\,\frac{W}{m\cdot ^{\circ}C} \right)\cdot (2.7\,m)\cdot (6\,m)}{0.16\,m} \cdot (31^{\circ}C - 8^{\circ}C)[/tex]
[tex]\dot Q = 815.063\,W[/tex]
The heat flow in a 18.6-h period is:
[tex]Q = \dot Q \cdot \Delta t[/tex]
[tex]Q = (815.063\,W)\cdot (18.6\,h)\cdot \left(\frac{3600\,s}{1\,h} \right)[/tex]
[tex]Q = 54576618.48\,J[/tex]
[tex]Q = 54.577\,MJ[/tex]
Answer:
W = 54.6 MJ ... ( 3 sig fig )
Explanation:
Given:-
- The thermal conductivity of wall, k = 0.35 W/m°C
- The thickness of wall , L = 16 cm
- The surface dimension of wall A = ( 2.7 x 6 ) m
- The time duration t = 18.6 hours
- The inside temperature, Ti = 31°C
- The outside temperature, To = 8°C
Find:-
How much heat flows through the wall in a 18.6 h period
Solution:-
- The Fourier's law of heat conduction in ( one - dimension ) through any material with thermal conductivity "k" is represented by the rate of heat transfer in the direction of x.
[tex]Q= - k*A*\frac{dT}{dx}[/tex]
- The fully derived expression for conduction heat transfer is given by:
[tex]Q = k*A*\frac{T_i - T_o}{L}[/tex]
- Plug in the given values and compute the rate of heat transfer:
[tex]Q = 0.35*2.7*6*\frac{31 - 8}{0.16}\\\\Q = 5.67*\frac{23}{0.16}\\\\Q = 815.0625 W[/tex]
- The heat energy that flows through the wall during time t = 18.6 hrs is given by W:
W = Q*t*3600 / 10^6
W = 815.0625*18.6*3600 / 10^6
W = 54576585 / 10^6 MJ
W = 54.6 MJ ... ( 3 sig fig )