Answer:
[tex]y=-\frac{1}{9}x-\frac{5}{9}[/tex]
Step-by-step explanation:
[tex](-14,1)(13,-2)[/tex]
Use the slope-intercept formula:
[tex]y=mx+b[/tex]
m is the slope and b is the y-intercept. Use the slope formula first:
[tex]\frac{y_{2}-y_{1}}{x_{2}-x_{1}} =\frac{rise}{run}[/tex]
Rise over run is the change in the y-axis over the change in the x-axis. Plug in the coordinates:
[tex](-14(x_{1}),1(y_{1}))\\(13(x_{2}),-2(y_{2}))[/tex]
[tex]\frac{-2-1}{13-(-14)}[/tex]
Simplify parentheses (two negatives makes a positive):
[tex]\frac{-2-1}{13+14}[/tex]
Simplify:
[tex]\frac{-3}{27} =-\frac{3}{27}=-\frac{1}{9}[/tex]
The slope is [tex]-\frac{1}{9}[/tex]. Insert into the equation:
[tex]y=-\frac{1}{9}x +b[/tex]
Now, to find the y-intercept, take one of the points and substitute for the x and y values of the equation:
[tex](13,-2)\\-2=-\frac{1}{9} (13)+b[/tex]
Solve for b, the y-intercept. Simplify parentheses:
[tex]-\frac{1}{9}*\frac{13}{1}=-\frac{13}{9}[/tex]
[tex]-2=-\frac{13}{9} +b[/tex]
Add [tex]-\frac{13}{9}[/tex] to both sides:
[tex]-2+\frac{13}{9}=-\frac{13}{9} +\frac{13}{9} +b\\\\-2+\frac{13}{9} =b[/tex]
Simplify:
[tex]-\frac{2}{1} +\frac{13}{9}\\\\-\frac{18}{9}+\frac{13}{9}\\ \\b=-\frac{5}{9}[/tex]
The y-intercept is [tex]-\frac{5}{9}[/tex] . Insert this into the equation:
[tex]y=-\frac{1}{9} x-\frac{5}{9}[/tex]
Finito.