Respuesta :
Answer:
Step-by-step explanation
Given that,
(2m+4) / 8 / (m+2) / 6
Then,
(2m+4) / 8 ÷ (m+2) / 6
[(2m+4) / 8] × [6 / (m+2)]
Simply the 2m+4
[2(m+2) / 8] × [6 / (m+2)]
Then, m+2 cancel out
We are left with
(2 / 8) × 6
12 / 8 = 3 / 2
So, the answer is three-halves
The last option is correct,
Check attachment for better understanding.

The quotient of an expression is the result of dividing the expressions
The quotient of [tex]\mathbf{\frac{2m + 4}{8} \div \frac{m + 2}{6}}[/tex] is three-halves
The expression is given as:
[tex]\mathbf{\frac{2m + 4}{8} \div \frac{m + 2}{6}}[/tex]
Rewrite the expression as a product
[tex]\mathbf{\frac{2m + 4}{8} \div \frac{m + 2}{6} = \frac{2m + 4}{8} \times \frac{6}{m + 2}}[/tex]
Factor out 2
[tex]\mathbf{\frac{2m + 4}{8} \div \frac{m + 2}{6} = \frac{2(m + 2)}{8} \times \frac{6}{m + 2}}[/tex]
Cancel out m + 2
[tex]\mathbf{\frac{2m + 4}{8} \div \frac{m + 2}{6} = \frac{2(1)}{8} \times \frac{6}{1}}[/tex]
Express 2(1) as 1
[tex]\mathbf{\frac{2m + 4}{8} \div \frac{m + 2}{6} = \frac{2}{8} \times \frac{6}{1}}[/tex]
Multiply 2 by 6, and 8 by 1
[tex]\mathbf{\frac{2m + 4}{8} \div \frac{m + 2}{6} = \frac{12}{8}}[/tex]
Divide 12 by 8
[tex]\mathbf{\frac{2m + 4}{8} \div \frac{m + 2}{6} = 1.5}[/tex]
1.5 means three-halves.
Hence, the quotient of the expression is three-halves
Read more about quotients at:
https://brainly.com/question/16134410