Respuesta :

Answer:

The answer is D: sin 11pi/6

<3

Step-by-step explanation:

The expression that is equivalent to the given expression is Sin(11π/6).

The given trigonometric expression is: [tex]Sin \frac{7\pi }{6}[/tex]

[tex]Sin\frac{7\pi }{6}[/tex] can be written as [tex]Sin(\pi +\frac{\pi }{6} )[/tex]

What is the value of Sin(π+θ)?

The value of [tex]Sin(\pi +\theta)[/tex] is [tex]-Sin\theta[/tex].

So, [tex]Sin(\pi +\frac{\pi }{6} )=-Sin\frac{\pi }{6}[/tex]

We know that

[tex]Sin(2\pi -\theta)=-Sin\theta[/tex]

Or, [tex]-Sin\theta=Sin(2\pi -\theta)[/tex]

So, [tex]-Sin\frac{\pi }{6} =Sin(2\pi -\frac{\pi }{6} )[/tex]

[tex]-Sin\frac{\pi }{6} =Sin\frac{11\pi }{6}[/tex]

So, the required expression is [tex]Sin\frac{11\pi }{6}[/tex].

Therefore, the expression that is equivalent to the given expression is Sin(11π/6).

To get more about trigonometric identities visit:

https://brainly.com/question/24349828

ACCESS MORE
EDU ACCESS