Answer:
(A) Strain = 0.0012
(b) Stress [tex]=77.44\times 10^5N/m^2[/tex]
(c) Young's modulus [tex]=6.45\times 10^9N/m^2[/tex]
Explanation:
Mass of the rock m = 75 kg
So weight of the rock [tex]F=mg=75\times 9.8=735N[/tex]
Length of the rope l = 18 m
Diameter of the rope d = 11 mm
Change in length of rope [tex]\Delta l=2.1cm =0.021m[/tex]
So radius r = 5.5 mm = 0.0055 m
Cross sectional area [tex]A=\pi r^2[/tex]
[tex]A=3.14\times 0.0055^2=9.49\times 10^{-5}m^2[/tex]
(a) Strain is equal to ratio change in length to original length
So strain [tex]=\frac{\Delta l}{l}=\frac{0.021}{18}=0.0012[/tex]
(b) Stress [tex]=\frac{Weight}{area}[/tex]
[tex]=\frac{735}{9.49\times 10^{-5}}=77.44\times 10^5N/m^2[/tex]
(c) Young's modulus is equal to ratio of stress and strain
So young's modulus [tex]=\frac{77.44\times 10^5}{0.0012}=6.45\times 10^9N/m^2[/tex]