Respuesta :

Answer:

answer is a on edg

Step-by-step explanation:

Equivalent expression are expressions that have equal values, when expanded. The equivalent expression of ln(2x)^4  is 4ln(2) + 4ln(x))

How to determine the expanded expression

The expression is given as:

[tex]\ln(2x)^4[/tex]

Apply the following logarithmic rule to the above equation

[tex]\ln(a)^b = b\ln(a)[/tex]

So, we have:

ln(2x)^4  = 4ln(2x)

Next, apply the following product rule of logarithm to the above equation

ln(ab) = ln(a) + ln(b)

So, we have:

ln(2x)^4  = 4 * [ln(2) + ln(x)]

Expand the bracket

ln(2x)^4  = 4ln(2) + 4ln(x))

Hence, the equivalent expression of ln(2x)^4  is 4ln(2) + 4ln(x))

Read more about equivalent expressions at:

https://brainly.com/question/2972832

ACCESS MORE
EDU ACCESS
Universidad de Mexico