Respuesta :
The given options are:
[tex](A)y-0=\dfrac{2b}{2a-c}(x-c)\\ (B)y=\dfrac{b}{a-c}x-\dfrac{2bc}{2a-c}\\(C)y=\dfrac{2b}{2a-c}x-\dfrac{bc}{2a-2c}\\(D)y=\dfrac{2b}{2a-c}x-\dfrac{2bc}{2a-c}\\(E)y=\dfrac{2b}{a-c}x-\dfrac{2bc}{a-c}[/tex]
Answer:
[tex](D)y = \dfrac{2b}{2a-c}x - \dfrac{2bc}{2a-c}[/tex]
Step-by-step explanation:
The diagram is attached for ease of comprehension.
The slope, m of line BD is given as: [tex]\dfrac{2b}{2a-c}[/tex]
The coordinates of B are: (2a,2b)
The coordinates of D are: (c,0)
From the form of the slope, let us take [tex](x_1,y_1)=(c,0)[/tex].
Substituting m and [tex](x_1,y_1)[/tex] into the equation of the line: [tex]y - y_1 = m(x - x_1)[/tex]
We obtain:
[tex]y - 0= \dfrac{2b}{2a-c}(x - c)[/tex]
Simplifying:
[tex]y = \dfrac{2b}{2a-c}x - \dfrac{2bc}{2a-c}[/tex]
The correct option is D.

Answer:
C. y = (2b / a - c) x -(2bc / 2a - c)
Step-by-step explanation:
took the test