Answer:
A. [tex]\sqrt{64}=8[/tex] miles
Step-by-step explanation:
Given two Cartesian coordinates [tex](x_1,y_1)\&(x_2,y_2)[/tex], the distance between the points is given as:
[tex]d = \sqrt{((x_1-x_2)^2+(y_1-y_2)^2)}[/tex]
Converting to polar coordinates
[tex](x_1,y_1) = (r_1 cos \theta_1, r_1 sin \theta_1)\\(x_2,y_2) = (r_2 cos \theta_2, r_2 sin \theta_2)[/tex]
Substitution into the distance formula gives:
[tex]\sqrt{((r_1 cos\theta_1-r_2 cos \theta_2)^2+(r_1 sin \theta_1-r_2 sin \theta_2)^2}\\=\sqrt{(r_1^2+r_2^2-2r_1r_2(cos \theta_1 cos \theta_2+sin\theta_1 sin \theta_2) }\\= \sqrt{r_1^2+r_2^2-2r_1r_2cos (\theta_1 -\theta_2)}[/tex]
In the given problem,
[tex](r_1,\theta_1)=(8 mi, 63^0) \:and\: (r_2,\theta_2)=(8 mi, 123^0 ).[/tex]
[tex]Distance=\sqrt{8^2+8^2-2(8)(8)cos (63 -123)}\\=\sqrt{128-128cos (-60)}\\=\sqrt{64}=8 mile[/tex]
The closest option is A. [tex]\sqrt{64}=8[/tex] miles