(a) Use differentiation to find a power series representation for f(x) = 1 (9 + x)2 . f(x) = [infinity] n = 0 What is the radius of convergence, R? R = (b) Use part (a) to find a power series for f(x) = 1 (9 + x)3 . f(x) = [infinity] n = 0 What is the radius of convergence, R? R = (c) Use part (b) to find a power series for f(x) = x2 (9 + x)3 . f(x) = [infinity] n = 2 What is the radius of convergence, R? R =

Respuesta :

Answer:

(a)

[tex]\sum\limits_{k=0}^{\infty} (k+1)(-1)^{k} \frac{x^k}{9^{k+2}}[/tex]

(b)

[tex]\sum\limits_{k=0}^{\infty} (k+1)(-1)^{k} \frac{x^k}{9^{k+2}}[/tex]

(c)

[tex]\sum\limits_{n=2}^{\infty} \frac{1}{2}x^n (-1)^{n-2}(n-1)n \frac{1}{9^{n+1}}[/tex]

All of them for

[tex]|x|<9[/tex]

Step-by-step explanation:

To begin with remember what is the power series representation of

(a)

[tex]f(x) = \frac{1}{9+x} = \sum\limits_{n=0}^{\infty} \, (-1)^{n} \frac{x^n}{9^{n+1}}[/tex]

When we find the derivative of the function at the left side of the equality we get.

[tex]f(x) = \frac{-1}{(9+x)^2}[/tex]

So basically our representation would be

[tex]-1 *\sum\limits_{n=1}^{\infty} n(-1)^n \frac{x^{n-1}}{9^{n+1}} = \sum\limits_{n=1}^{\infty} n(-1)^{n+1} \frac{x^{n-1}}{9^{n+1}}[/tex]

Now if you reset the index by setting [tex]k = n-1[/tex] when  n=1   k=0, and if [tex]k = n-1[/tex] then [tex]k+1 = n[/tex]. Therefore we will have

[tex]\sum\limits_{k=0}^{\infty} (k+1)(-1)^{k+2} \frac{x^k}{9^{k+1+1}} = \sum\limits_{k=0}^{\infty} (k+1)(-1)^{k} \frac{x^k}{9^{k+2}}[/tex]

That converges for

[tex]\big|\frac{x}{9}\big| <1[/tex]

Therefore is valid for

[tex]|x|<9[/tex]

(b)

To begin with remember that

[tex]\frac{1}{(x+9)^2} = \sum\limits_{k=0}^{\infty} (k+1)(-1)^{k} \frac{x^k}{9^{k+2}}[/tex]

for

[tex]|x|<9[/tex]

Therefore finding the derivative of the right expression and multiplying by -1/2 we get that

[tex]\frac{1}{(x+1)^3} = \sum\limits_{k=0}^{\infty} \, \frac{1}{2}x^k (-1)^k(1+k)(2+k)\frac{1}{9^{k+3}}[/tex]

for

[tex]|x|<9[/tex]

(c)

For this problem you just have to multiply [tex]x^2[/tex] to the result that you found in (b)

So you would get that

[tex]\frac{x^2}{(x+1)^3} = \sum\limits_{k=0}^{\infty} \, \frac{1}{2}x^{k+2} (-1)^k(1+k)(2+k)\frac{1}{9^{k+3}}[/tex]

But once again to make it look more elegant you can adjust the index of the sum by setting [tex]n = k+2[/tex], therefore if k=0 then n=2 and k=n-2 so we would have

[tex]\sum\limits_{k=0}^{\infty} \, \frac{1}{2}x^{k+2} (-1)^k(1+k)(2+k)\frac{1}{9^{k+3}} = \sum\limits_{n=2}^{\infty} \frac{1}{2}x^n (-1)^{n-2}(n-1)n \frac{1}{9^{n+1}}[/tex]

once again for

[tex]|x|<9[/tex]

ACCESS MORE
EDU ACCESS