Answer: The final temperature of both substances at thermal equilibrium is 301.0 K
Explanation:
[tex]heat_{absorbed}=heat_{released}[/tex]
As we know that,
[tex]Q=m\times c\times \Delta T=m\times c\times (T_{final}-T_{initial})[/tex]
[tex]m_1\times c_1\times (T_{final}-T_1)=-[m_2\times c_2\times (T_{final}-T_2)][/tex] .................(1)
where,
q = heat absorbed or released
[tex]m_1[/tex] = mass of gold = 31.5 g
[tex]m_2[/tex] = mass of water = 63.4 g
[tex]T_{final}[/tex] = final temperature = ?
[tex]T_1[/tex] = temperature of gold = [tex]69.4^oC=342.4K[/tex]
[tex]T_2[/tex] = temperature of water = [tex]27.4^oC=300.4K[/tex]
[tex]c_1[/tex] = specific heat of gold = [tex]0.129J/g^0C[/tex]
[tex]c_2[/tex] = specific heat of water= [tex]4.184J/g^0C[/tex]
Now put all the given values in equation (1), we get
[tex]-31.5\times 0.129\times (T_{final}-342.4)=[63.4\times 4.184\times (T_{final}-300.4)][/tex]
[tex]T_{final}=301.0K[/tex]
The final temperature of both substances at thermal equilibrium is 301.0 K