Answer:
[tex]\vec l = (-4, 11) + t\cdot (-3,8)[/tex], [tex]x = -4 - 3\cdot t[/tex] and [tex]y = 11 + 8\cdot t[/tex]
Step-by-step explanation:
The vector equation of the line is:
[tex]\vec l = \vec P + t \cdot \vec A[/tex]
[tex]\vec l = (-4, 11) + t\cdot (-3,8)[/tex]
The parametric equations of the line are:
[tex]x = -4 - 3\cdot t[/tex] and [tex]y = 11 + 8\cdot t[/tex]