Answer:
z1 = 7.71 + 0.02 i
z2 = 7.73 + 0.306 i
z3 = 7.78 + 0.59 i
Step-by-step explanation:
To find the roots you use:
[tex]z^{\frac{1}{n}}=r^{\frac{1}{n}}[cos(\frac{\theta+2\pi k}{n})+isin(\frac{\theta+2\pi k}{n})][/tex] ( 1 )
n: the order of the roots
k: 0,1,2,...,n-1
First, you write z in polar notation:
[tex]z=re^{i\theta}\\\\r=\sqrt{(473)^2+(4)^2}=473.01\\\\\theta=tan^{-1}(\frac{4}{473})=0.48\°[/tex]
Thus, by using these values for the angle and r in the expression (1), you obtain:
[tex]k=0\\\\z_1=(473.01)^{1/3}[cos(\frac{0.48+2\pi(0)}{3})+isin(\frac{0.48+2\pi(0)}{3})]\\\\z_1=7.79(0.99+i2.79*10^{-3})=7.71+i0.02\\\\z_2=7.79[cos(\frac{0.48+2\pi(1)}{3})+isin(\frac{0.48+2\pi(1)}{3})]\\\\z_2=7.73+i0.306\\\\z_3=7.79[cos(\frac{0.48+2\pi(2)}{3})+isin(\frac{0.48+2\pi(2)}{3})]\\\\z_3=7.78+i0.59[/tex]
hence, from the previous results you obtain:
z1 = 7.71 + 0.02 i
z2 = 7.73 + 0.306 i
z3 = 7.78 + 0.59 i
I attached and image of the plot