Respuesta :
Answer:
99% confidence interval for the population proportion of passing test scores is [0.5986 , 0.9414].
Step-by-step explanation:
We are given that a high school principal wishes to estimate how well his students are doing in math.
Using 40 randomly chosen tests, he finds that 77% of them received a passing grade.
Firstly, the pivotal quantity for 99% confidence interval for the population proportion is given by;
P.Q. = [tex]\frac{\hat p-p}{\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] ~ N(0,1)
where, [tex]\hat p[/tex] = sample proportion of students received a passing grade = 77%
n = sample of tests = 40
p = population proportion
Here for constructing 99% confidence interval we have used One-sample z proportion test statistics.
So, 99% confidence interval for the population proportion, p is ;
P(-2.5758 < N(0,1) < 2.5758) = 0.99 {As the critical value of z at 0.5%
level of significance are -2.5758 & 2.5758}
P(-2.5758 < [tex]\frac{\hat p-p}{\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] < 2.5758) = 0.99
P( [tex]-2.5758 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] < [tex]{\hat p-p}[/tex] < [tex]2.5758 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] ) = 0.99
P( [tex]\hat p-2.5758 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] < p < [tex]\hat p+2.5758 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] ) = 0.99
99% confidence interval for p = [[tex]\hat p-2.5758 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] , [tex]\hat p+2.5758 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex]]
= [ [tex]0.77-2.5758 \times {\sqrt{\frac{0.77(1-0.77)}{40} } }[/tex] , [tex]0.77+2.5758 \times {\sqrt{\frac{0.77(1-0.77)}{40} } }[/tex] ]
= [0.5986 , 0.9414]
Therefore, 99% confidence interval for the population proportion of passing test scores is [0.5986 , 0.9414].
Lower bound of interval = 0.5986
Upper bound of interval = 0.9414