Respuesta :
Answer:
(a)I. 13 Sides II. 7 Sides
(b) 4 Sides, Square
(c)x=52 degrees
(d)x=107 degrees
(e)1620 degrees
Step-by-step explanation:
(a)The Sum of the Interior angle of polygon with n sides is derived using the formula: (n-2)180.
I. If the Interior angle is [tex]1980^0[/tex]
Then:
[tex](n-2)180^0=1980^0\\$Divide both sides by 180^0 $ to isolate n$\\n-2=11\\$Add 2 to both sides of the equation\\n-2+2=11+2\\n=13[/tex]
The polygon has 13 sides.
II. If the Interior angle is [tex]900^0[/tex]
Then:
[tex](n-2)180^0=900^0\\$Divide both sides by 180^0 $ to isolate n$\\n-2=5\\$Add 2 to both sides of the equation\\n-2+2=5+2\\n=7[/tex]
The polygon has 7 sides.
(b)The sum of the exterior angle of a polygon is 360 degrees,
Each exterior angle of a n-sided regular polygon is: [tex]\frac{360^0}{n}[/tex]
If the exterior angle of a regular polygon is 90°
Then:
[tex]90\°=\frac{360^0}{n}\\ 90n=360\\n=4[/tex]
The regular polygon has 4 sides and it is called a Square.
(c)The Sum of the Interior angle of polygon with n sides is derived using the formula: (n-2)180.
Each Interior angle of a regular n-sided polygon is: [tex]\frac{(n-2)180^0}{n}[/tex]
For a pentagon, n=5
Then:
[tex]\frac{(5-2)180^0}{5}=2x+4\\108=2x+4\\108-4=2x\\104=2x\\x=52^0[/tex]
(d)The sum of the exterior angle of a polygon is 360 degrees.
If four of the exterior angles of a pentagon are 57, 74, 56, and 66.
Let the fifth angle=x
Then:
[tex]57+74+56+66+x=360^0\\253+x=360\\x=107^0[/tex]
(e)The Sum of the Interior angle of polygon with n sides is derived using the formula: (n-2)180.
In an 11-gon., n=11
Therefore, the sum of the interior angle=(11-2)180=[tex]1620^0[/tex]
The sum of the interior angle does not change either in a regular or irregular polygon.
Otras preguntas
