Answer:
[tex]\dfrac{y^2+3y}{y^2-6y+9}[/tex]
Step-by-step explanation:
When we write this using appropriate math symbols, it is easier to see the solution. To evaluate this, we multiply by the inverse of the denominator fraction.
[tex]\dfrac{2y}{y - 3}\div \dfrac{ 4 y - 12}{2 y + 6}=\dfrac{2y}{y-3}\cdot\dfrac{2y+6}{4y-12}\\\\=\dfrac{4y(y+3)}{4(y-3)^2}}=\boxed{\dfrac{y^2+3y}{y^2-6y+9}}[/tex]