A plane monochromatic electromagnetic wave with wavelength ? = 3 cm, propagates through a vacuum. Its magnetic field is described by
B? =(Bxi^+Byj^)cos(kz+?t)
where Bx = 3.3 X 10-6 T, By = 3.9 X 10-6 T, and i-hat and j-hat are the unit vectors in the +x and +y directions, respectively.
1)
What is f, the frequency of this wave?
GHz
2)
What is I, the intensity of this wave?
W/m2
3)
What is Sz, the z-component of the Poynting vector at (x = 0, y = 0, z = 0) at t = 0?
W/m2
4)
What is Ex, the x-component of the electric field at (x = 0, y = 0, z = 0) at t = 0?
V/m
5)
Compare the sign and magnitude of Sz, the z-component of the Poynting vector at (x=y=z=t=0) of the wave described above to the sign and magnitude of SIIz, the z-component of the Poynting vector at (x=y=z=t=0) of another plane monochromatic electromagnetic wave propagating through vaccum described by:
B? =(BIIxi^?BIIyj^)cos(kz??t)
where BIIx = 3.9 X 10-6 T, BIIy = 3.3 X 10-6 T, and i-hat and j-hat are the unit vectors in the +x and +y directions, respectively.
SIIz < 0 and magnitude(SIIz) =/ (does not equal sign) magnitude(Sz)
SIIz < 0 and magnitude(SIIz) = magnitude(Sz)
SIIz > 0 and magnitude(SIIz) =/ (does not equal sign) magnitude(Sz)
SIIz > 0 and magnitude(SIIz) = magnitude(