Respuesta :
Answer:
3.071*10^{-6}V
Explanation:
To find the potential difference you take into account the kinetic energy of the electron generated by the potential:
[tex]E_k=\frac{1}{2}m_ev^2=eV[/tex] (1)
m: mass of the electron = 9.1*10^{-31}kg
v: velocity of electron
V: potential difference
e: charge of electron = 1.6*10^{-19}C
Thus, is necessary to find the velocity. By using the Broglie's relation you obtain:
[tex]p=m_ev=\frac{h}{\lambda}\\\\v=\frac{h}{m\lambda}[/tex]
h: Planck's constant = 6.62*10^{-34}Js
wavelength = 700*10^{-9}m
[tex]v=\frac{6.62*10^{-34}Js}{(9.1*10^{-31}kg)(700*10^{-9}m)}=1039.24\frac{m}{s}[/tex]
By doing V the subject of the formula (1) you obtain:
[tex]V=\frac{m_ev^2}{2e}=\frac{(9.1*10^{-31}kg)(1039.24m/s)^2}{2(1.6*10^{-19}C)}=3.071*10^{-6}V=3.071\mu V[/tex]
the potential difference required is 3.071*10^{-6}V
Answer:
3.064x10^-6 V
Explanation:
Detailed explanation and calculation is shown in the image below.
