Answer:
The uncertainty of the position of the bacterium = [tex]3.76*10^{-10} \ m[/tex]
Explanation:
Given that:
mass (m) =0.500 fg
To kilogram; we have:
[tex]m = \frac{0.500}{10^{18}}[/tex]
[tex]m = 5*10^{-19} \ kg[/tex]
Velocity (v) = 7.00 μm/s
To meter/seconds (m/s);
Velocity (v) = [tex]7*10^{-6} \ m/s[/tex]
Uncertainty of the velocity is given as 4% = 0.04
Then; multiplying the velocity of the bacterium; we have:
[tex]7*10^{-6} \ m/s[/tex] [tex]*0.04[/tex]
[tex]= 2.8*10^{-7}[/tex]
To determine the uncertainty in the momentum;we multiply the uncertainty in the velocity by the mass:
[tex]m* \delta y = (2.8*10^{-7} )(5*10^{-19} ) \\ \\ m* \delta y = 1.4*10^{-25}[/tex]
Now; according to Heisenberg's Uncertainty Principle;
[tex]\delta x* m * \delta y \geq \frac{h}{4 \pi } \\ \\ \\ \delta x = \frac{h}{4 \pi*(m*\delta y)}[/tex]
where;
[tex]\delta x[/tex] = uncertainty in the position
[tex]\delta y =[/tex] uncertainty in the velocity
h = Planck's Constant
[tex]\delta x = \frac{h}{4 \pi*(m*\delta y)}[/tex]
[tex]\delta x = \frac{6.626*10^{-34}}{4 \pi*(1.4*10^{-25})}[/tex]
[tex]\delta x = \frac{6.626*10^{-34}}{1.76*10^{-10}}[/tex]
[tex]\delta x =3.76*10^{-10} \ m[/tex]
Thus, the uncertainty of the position of the bacterium = [tex]3.76*10^{-10} \ m[/tex]