Respuesta :
Answer:[tex]t=1.732\times 10^{-5}\ s[/tex]
Explanation:
Given
Voltage [tex]V=35\ V[/tex]
Resistance [tex]R=50\ Omega[/tex]
Inductance [tex]L=1.25\ mH[/tex]
Current in the L-R circuit increases as
[tex]i=\frac{V}{R}(1-e^{-\frac{t}{\tau }})[/tex]
Where [tex]\tau [/tex]=time constant [tex](\frac{L}{R})[/tex]
[tex]\frac{V}{R}=i[/tex](Maximum current)
Time at which current will be half of maximum i.e.
[tex](1-e^{-\frac{t}{\tau }})=\frac{1}{2}[/tex]
[tex]e^{-\frac{t}{\tau }}=\frac{1}{2}[/tex]
[tex]\frac{t}{\tau }=\ln (2)[/tex]
[tex]t=\frac{L}{R}\times \ln (2)[/tex]
[tex]t=\frac{1.25\times 10^{-3}}{50}\times \ln (2)[/tex]
[tex]t=1.732\times 10^{-5}\ s[/tex]
After closing the switch the current through the inductor reach one-half of its maximum value in "1.732 × 10⁻⁵ s".
L-R Circuit
According to the question,
Voltage, V = 35 V
Resistance, R = 50.0 Ω
Inductance, L = 1.25 mH
Time constant, [tex]\tau[/tex] = [tex]\frac{L}{R}[/tex]
Max. current, i = [tex]\frac{V}{R}[/tex]
We know the relation,
→ i = [tex]\frac{V}{R} (1 - e^{-\frac{t}{\tau} })[/tex]
or,
(1 - [tex]e^{-\frac{t}{r} }[/tex]) = [tex]\frac{1}{2}[/tex]
[tex]e^{-\frac{t}{r} }[/tex] = [tex]\frac{1}{2}[/tex]
[tex]\frac{t}{\tau}[/tex] = ln(2)
or, t = [tex]\frac{L}{R}[/tex] × ln(2)
By substituting the values,
= [tex]\frac{1.25\times 10^{-3}}{50}[/tex] × ln(2)
= 1.732 × 10⁻⁵ s
Thus the above answer is right.
Find out more information about resistance here:
https://brainly.com/question/15595203