Respuesta :
Answer:
a
The velocity is [tex]v =17.98 \ m/s[/tex]
b
The diameter is [tex]d = 0.00184m[/tex]
Explanation:
The diagram of the set up is shown on the first uploaded image
From the question we are told that
The height of the water tank is [tex]h = 20.0 \ m[/tex]
The position of the hole [tex]p_h = 16.5m[/tex] below water level
The rate of water flow [tex]\r V = 2.90 *10^{-3} m^3 /min = \frac{2.90 *10^{-3}}{60} = 0.048*10^{-3} m^3/s[/tex]
According to Bernoulli's theorem position of the hole
[tex]\frac{P_o + h \rho g}{\rho} + \frac{1}{2} u^2 = \frac{P_o}{\rho } + \frac{1}{2} v^2[/tex]
Where u is the initial speed the water through the hole = 0 m/s
[tex]P_o[/tex] is the atmospheric pressure
[tex]\frac{P_o }{\rho} + \frac{ h \rho g}{\rho} + 0 = \frac{P_o}{\rho } + \frac{1}{2} v^2[/tex]
[tex]v = \sqrt{2gh}[/tex]
Substituting value
[tex]v = \sqrt{2 * 9.8 * 16.5 }[/tex]
[tex]v =17.98 \ m/s[/tex]
The Volumetric flow rate is mathematically represented as
[tex]\r V = A * v[/tex]
Making A the subject
[tex]A = \frac{\r V}{v}[/tex]
substituting value
[tex]A = \frac{0.048 *10^{-3}}{17.98}[/tex]
[tex]= 2.66*10^{-6}m^2[/tex]
Area is mathematically represented as
[tex]A = \frac{\pi d^2}{4}[/tex]
making d the subject
[tex]d = \sqrt{\frac{4*A}{\pi} }[/tex]
Substituting values
[tex]d = \sqrt{\frac{4 * 2.67 *10^{-6}}{3.142} }[/tex]
[tex]d = 0.00184m[/tex]
