cylindrical water tank is 20.0 m tall, open to the atmosphere at the top, and is filled to the top. It is noticed that a small hole has occurred in the side at a point 16.5 m below the water level and that water is flowing out at the volume flow rate of 2.90 10-3 m3/min. Determine the following. (a) the speed in m/s at which water is ejected from the hole

Respuesta :

Answer:

a

The velocity is  [tex]v =17.98 \ m/s[/tex]

b

The diameter is  [tex]d = 0.00184m[/tex]

Explanation:

The diagram of the set up is shown on the first uploaded image  

From the question we are told that

    The height of the water tank is [tex]h = 20.0 \ m[/tex]

    The position of the hole [tex]p_h = 16.5m[/tex] below  water level

     The  rate  of water flow [tex]\r V = 2.90 *10^{-3} m^3 /min = \frac{2.90 *10^{-3}}{60} = 0.048*10^{-3} m^3/s[/tex]

  According to Bernoulli's theorem position of the hole

              [tex]\frac{P_o + h \rho g}{\rho} + \frac{1}{2} u^2 = \frac{P_o}{\rho } + \frac{1}{2} v^2[/tex]

Where  u is  the initial speed the water through the hole = 0 m/s

              [tex]P_o[/tex] is the atmospheric pressure

            [tex]\frac{P_o }{\rho} + \frac{ h \rho g}{\rho} + 0 = \frac{P_o}{\rho } + \frac{1}{2} v^2[/tex]

                   [tex]v = \sqrt{2gh}[/tex]

Substituting value

           [tex]v = \sqrt{2 * 9.8 * 16.5 }[/tex]

              [tex]v =17.98 \ m/s[/tex]

The Volumetric flow rate is mathematically represented as

          [tex]\r V = A * v[/tex]

     Making A the subject

              [tex]A = \frac{\r V}{v}[/tex]

 substituting value  

             [tex]A = \frac{0.048 *10^{-3}}{17.98}[/tex]

                 [tex]= 2.66*10^{-6}m^2[/tex]

Area is mathematically represented as

        [tex]A = \frac{\pi d^2}{4}[/tex]

  making d the subject

         [tex]d = \sqrt{\frac{4*A}{\pi} }[/tex]

  Substituting values

        [tex]d = \sqrt{\frac{4 * 2.67 *10^{-6}}{3.142} }[/tex]

          [tex]d = 0.00184m[/tex]

     

                 

Ver imagen okpalawalter8
ACCESS MORE
EDU ACCESS