Respuesta :
Answer:
Step-by-step explanation:
Hello!
Given the variables:
Y: Weekday ridership for six light-rail systems (measured in thousands of passengers)
X: Miles of track of six light-rail systems
You have to estimate the regression equation to predict the ridership given the miles of track
^Yi= a + bXi
Where a is the estimation of the intercept and b is the estimation of the slope.
To calculate it you have to use the following formulas:
a= Y[bar] - bX[bar]
b=[tex]\frac{sumXY-\frac{(sumX)(sumY)}{n} }{sumX^2-\frac{(sumX)^2}{n} }[/tex]
∑X= 203; ∑X²= 6725; ∑Y= 309; ∑Y²= 17261; ∑XY= 17261
X[bar]= ∑X/n= 203/7= 29
Y[bar]= ∑Y/n= 309/7= 44.14
[tex]b= \frac{17261-\frac{203*309}{7} }{6725-\frac{(203)^2}{7} }= 1.76[/tex]
[tex]a= 44.14 - 1.76*29= -6.76[/tex]
The estimated regression equation is ^Yi= -6.76 + 44.14Xi
The formula for the 95% CI for the mean weekday ridership for all light-rail systems with 30 miles of track is:
95% CI for E(Y/X=30)
(a+bX₀) ± [tex]t_{n-2;1-\alpha /2}[/tex] * [tex]\sqrt{Se^2(\frac{1}{n}+\frac{(X_0-X[bar])^2}{sumX^2-\frac{(sumX)^2}{n} } )}[/tex]
Se²= 207.74
[tex]t_{n-2;1-\alpha /2}= t_{5;0.975}= 2.571[/tex]
(-6.76 + 44.14*30) ± 2.571 * [tex]\sqrt{207.74(\frac{1}{7}+\frac{(30-29)^2}{6725-\frac{(203)^2}{7} } )}[/tex]
1317.44 ± 2.571 * 5.47
[1303.38; 1331.50]
Using a 95% confidence level you'd expect that the interval [1303.38; 1331.50] includes the population average of weekday ridership for a 30 miles light-rail system.
95% Prediction interval: Y/[tex]X_{n+1}[/tex]=30miles
(a+b[tex]X_{n+1}[/tex]) ± [tex]t_{n-2;1-\alpha /2}[/tex] * [tex]\sqrt{Se^2(1+\frac{1}{n}+\frac{(X_{n+1}-X[bar])^2}{sumX^2-\frac{(sumX)^2}{n} } )}[/tex]
(-6.76 + 44.14*30) ± 2.571 * [tex]\sqrt{207.74(1+\frac{1}{7}+\frac{(30-29)^2}{6725-\frac{(203)^2}{7} } )}[/tex]
1317.44±2.571*15.41
[1277.82; 1357.06]
With a 95% level, you can expect that the interval [1277.82; 1357.06] contains the possible value of weekday riders for a 30 miles light-rail system.
I hope this helps!

