Answer:
Step-by-step explanation:
a) The function is:
[tex]f(t)=e^{at}t^n[/tex]
Is is necessary to demonstrate that:
[tex]L[f(t)] = \frac{n!}{(s-a)^{n+1}}[/tex]
you can use two identities of Laplace's transforms:
[tex]L[t^n]=\frac{n!}{s^{n+1}}\\\\L[e^{at}g(t)]=G(s-a)\\\\[/tex]
By using the previous transforms you obtain:
[tex]L[f(t)] = \frac{n!}{(s-a)^{n+1}}[/tex]
b) The other way is to use the following formula:
[tex]L[t^nf(t)]=(-1)^n\frac{d^n}{ds^n}F(s)[/tex]
Then, you use the following identities:
[tex]L[e^{at}]=\frac{1}{s-a}\\\\\frac{d^n}{ds^n}[\frac{1}{s-a}]=(-1)^n\frac{n!}{(s-a)^{n+1}}[/tex]
then, by replacing you obtain:
[tex]L[f(t)] = \frac{n!}{(s-a)^{n+1}}[/tex]