Respuesta :

Answer:

The smallest radian solution is 3.14, approximately. And the next smallest radian solution is 1.32, approximately.

Step-by-step explanation:

The given expression is

[tex]-4sin^{2}(x)-3cos(x)=-3[/tex]

We know that [tex]sin^{2}(x)=1-cos^{2} (x)[/tex]

So,

[tex]-4(1-cos^{2}(x))-3cos(x)=-3\\ -4+4cos^{2}(x)-3 cos(x)=-3\\4cos^{2}(x)-3cos(x)-4+3=0\\4cos^{2}(x)-3cos(x)-1=0[/tex]

Let's call [tex]y=cos(x)[/tex], so

[tex]4y^{2}-3y-1=0[/tex]

Where [tex]a=4[/tex], [tex]b=-3[/tex] and [tex]c=-1[/tex]. Using the quadratic formula, we have

[tex]y_{1,2}=\frac{-b(+-)\sqrt{b^{2}-4ac } }{2a}= \frac{-(-3)(+-)\sqrt{(-3)^{2}-4(4)(-1) } }{2(4)}\\y_{1,2}=\frac{3(+-)\sqrt{9+16} }{8}=\frac{-3(+-)\sqrt{25} }{8} =\frac{-3(+-)5}{8}[/tex]

Where

[tex]y_{1}=\frac{-3+5}{8}=\frac{2}{8}=\frac{1}{4}\\ y_{2}=\frac{-3-5}{8}=\frac{-8}{8}=-1[/tex]

But, [tex]y=cos(x)[/tex]

So,

[tex]cos(x)=\frac{1}{4}\\x=cos^{-1}(\frac{1}{4} ) \approx 1.32[/tex] and [tex]cos(x)=-1}\\x=cos^{-1}(-1) \approx 3.14[/tex]

Therefore, the smallest radian solution is 3.14, approximately. And the next smallest radian solution is 1.32, approximately.

ACCESS MORE
EDU ACCESS
Universidad de Mexico