Answer:
Step-by-step explanation:
The given expression is
[tex]-4sin^{2}(x)-3cos(x)=-3[/tex]
We know that [tex]sin^{2}(x)=1-cos^{2} (x)[/tex]
So,
[tex]-4(1-cos^{2}(x))-3cos(x)=-3\\ -4+4cos^{2}(x)-3 cos(x)=-3\\4cos^{2}(x)-3cos(x)-4+3=0\\4cos^{2}(x)-3cos(x)-1=0[/tex]
Let's call [tex]y=cos(x)[/tex], so
[tex]4y^{2}-3y-1=0[/tex]
Where [tex]a=4[/tex], [tex]b=-3[/tex] and [tex]c=-1[/tex]. Using the quadratic formula, we have
[tex]y_{1,2}=\frac{-b(+-)\sqrt{b^{2}-4ac } }{2a}= \frac{-(-3)(+-)\sqrt{(-3)^{2}-4(4)(-1) } }{2(4)}\\y_{1,2}=\frac{3(+-)\sqrt{9+16} }{8}=\frac{-3(+-)\sqrt{25} }{8} =\frac{-3(+-)5}{8}[/tex]
Where
[tex]y_{1}=\frac{-3+5}{8}=\frac{2}{8}=\frac{1}{4}\\ y_{2}=\frac{-3-5}{8}=\frac{-8}{8}=-1[/tex]
But, [tex]y=cos(x)[/tex]
So,
[tex]cos(x)=\frac{1}{4}\\x=cos^{-1}(\frac{1}{4} ) \approx 1.32[/tex] and [tex]cos(x)=-1}\\x=cos^{-1}(-1) \approx 3.14[/tex]
Therefore, the smallest radian solution is 3.14, approximately. And the next smallest radian solution is 1.32, approximately.