Respuesta :
Answer:
The minimum score required for a letter of recognition is 631.24.
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:
[tex]\mu = 493, \sigma = 108[/tex]
What is the minimum score required for a letter of recognition
100 - 10 = 90th percentile, which is the value of X when Z has a pvalue of 0.9. So X when Z = 1.28.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]1.28 = \frac{X - 493}{108}[/tex]
[tex]X - 493 = 1.28*108[/tex]
[tex]X = 631.24[/tex]
The minimum score required for a letter of recognition is 631.24.
Answer:
[tex]b=493 +1.28*108=631.24[/tex]
The minimum score required for a letter of recognition would be 631.24
Step-by-step explanation:
Let X the random variable that represent the writing scores of a population, and for this case we know the distribution for X is given by:
[tex]X \sim N(493,108)[/tex]
Where [tex]\mu=493[/tex] and [tex]\sigma=108[/tex]
On this questio we want to find a value b, such that we satisfy this condition:
[tex]P(X>b)=0.10[/tex] (a)
[tex]P(X<b)=0.90[/tex] (b)
Both conditions are equivalent on this case. We can use the z score again in order to find b.
As we can see on the figure attached the z value that satisfy the condition with 0.90 of the area on the left and 0.1 of the area on the right it's z=1.28. On this case P(Z<1.28)=0.9 and P(z>1.28)=0.1
If we use condition (b) from previous we have this:
[tex]P(X<b)=P(\frac{X-\mu}{\sigma}<\frac{b-\mu}{\sigma})=0.90[/tex]
[tex]P(z<\frac{b-\mu}{\sigma})=0.90[/tex]
[tex]z=1.28<\frac{b-493}{108}[/tex]
And if we solve for a we got
[tex]b=493 +1.28*108=631.24[/tex]
The minimum score required for a letter of recognition would be 631.24
Otras preguntas
