Respuesta :
Answer:
95% confidence interval for the population mean weight of adult female golden retrievers is [53.01 pounds , 56.78 pounds].
Step-by-step explanation:
We are given that the weights, in pounds, of a sample of 13 adult female golden retriever dogs :
59.0, 54.1, 53.7, 51.6, 57.5, 58.7, 58.0, 53.8, 48.9, 53.9, 51.6, 55.9, and 57.4.
Firstly, the pivotal quantity for 95% confidence interval for the population mean is given by;
P.Q. = [tex]\frac{\bar X -\mu}{\frac{s}{\sqrt{n} } }[/tex] ~ [tex]t_n_-_1[/tex]
where, [tex]\bar X[/tex] = sample mean weight = [tex]\frac{\sum X }{n}[/tex] = 54.9 pounds
s = sample standard deviation = [tex]\frac{\sum (X-\bar X)^{2} }{n-1}[/tex] = 3.12 pounds
n = sample of female = 13
[tex]\mu[/tex] = population mean weight
Here for constructing 95% confidence interval we have used One-sample t test statistics because we don't know about population standard deviation.
So, 95% confidence interval for the population mean, [tex]\mu[/tex] is ;
P(-2.179 < [tex]t_1_2[/tex] < 2.179) = 0.95 {As the critical value of t at 12 degree
of freedom are -2.179 & 2.179 with P = 2.5%}
P(-2.179 < [tex]\frac{\bar X -\mu}{\frac{s}{\sqrt{n} } }[/tex] < 2.179) = 0.95
P( [tex]-2.179 \times {\frac{s}{\sqrt{n} } }[/tex] < [tex]{\bar X -\mu}[/tex] < [tex]2.179 \times {\frac{s}{\sqrt{n} } }[/tex] ) = 0.95
P( [tex]\bar X-2.179 \times {\frac{s}{\sqrt{n} } }[/tex] < [tex]\mu[/tex] < [tex]\bar X +2.179 \times {\frac{s}{\sqrt{n} } }[/tex] ) = 0.95
95% confidence interval for [tex]\mu[/tex] = [tex]\bar X \pm 2.179 \times {\frac{s}{\sqrt{n} } }[/tex]
= [ [tex]54.9 - 2.179 \times {\frac{3.12}{\sqrt{13} } }[/tex] , [tex]54.9 +2.179 \times {\frac{3.12}{\sqrt{13} } }[/tex] ]
= [53.01 pounds , 56.78 pounds]
Therefore, 95% confidence interval for the population mean weight of adult female golden retrievers is [53.01 pounds , 56.78 pounds].