Answer:
Given:
n = 1000
Sample proportion, p' = 530/1000 = 0.53
P = 0.5
significance level, a= 0..05
For null hypothesis and alternative hypothesis:
[tex] H_0 : p=0.5 [/tex]
[tex] H_a : p > 0.5 [/tex]
For test statistic, Z, we have:
[tex] \frac{p' - p}{\sqrt{\frac{p*(1-p)}{n}}}[/tex]
[tex] \frac{0.53 - 0.5}{\sqrt{\frac{0.5(1-0.5)}{1000}}}[/tex]
Zscore = 1.898 ≈ 1.90
p-value = P(Z > 1.9) = 1 -P(<1.9)
= 1 - 0.9713 = 0.0287
Therefore, p- value = 0.0287
Since the p- value(0.0287) is less than significance level (0.05), we reject null hypothesis, H0.