Answer:
[tex](D)E[ X ] =np.[/tex]
Step-by-step explanation:
Given a binomial experiment with n trials and probability of success p,
[tex]f(x)=\left(\begin{array}{c}n\\k\end{array}\right)p^x(1-p)^{n-x}, 0\leq x\leq n[/tex]
[tex]E(X)=\sum_{x=0}^{n}xf(x)= \sum_{x=0}^{n}x\left(\begin{array}{c}n\\k\end{array}\right)p^x(1-p)^{n-x}[/tex]
Since each term of the summation is multiplied by x, the value of the term corresponding to x = 0 will be 0. Therefore the expected value becomes:
[tex]E(X)=\sum_{x=1}^{n}x\left(\begin{array}{c}n\\x\end{array}\right)p^x(1-p)^{n-x}[/tex]
Now,
[tex]x\left(\begin{array}{c}n\\x\end{array}\right)= \frac{xn!}{x!(n-x)!}=\frac{n!}{(x-)!(n-x)!}=\frac{n(n-1)!}{(x-1)!((n-1)-(x-1))!}=n\left(\begin{array}{c}n-1\\x-1\end{array}\right)[/tex]
Substituting,
[tex]E(X)=\sum_{x=1}^{n}n\left(\begin{array}{c}n-1\\x-1\end{array}\right)p^x(1-p)^{n-x}[/tex]
Factoring out the n and one p from the above expression:
[tex]E(X)=np\sum_{x=1}^{n}n\left(\begin{array}{c}n-1\\x-1\end{array}\right)p^{x-1}(1-p)^{(n-1)-(x-1)}[/tex]
Representing k=x-1 in the above gives us:
[tex]E(X)=np\sum_{k=0}^{n}n\left(\begin{array}{c}n-1\\k\end{array}\right)p^{k}(1-p)^{(n-1)-k}[/tex]
This can then be written by the Binomial Formula as:
[tex]E[ X ] = (np) (p +(1 - p))^{n -1 }= np.[/tex]