Answer:
[tex]P_{m}=(6,10.5,9)[/tex]
Step-by-step explanation:
The mid point can be found with the formula
[tex]P_{m}=(\frac{x_{1}+x_{2} }{2},\frac{y_{1} +y_{2} }{2} ,\frac{z_{1}+z_{2} }{2} )[/tex]
The given coordinates are [tex]P(5,10,8)[/tex] and [tex]Q(7,11,10)[/tex].
Replacing coordinates in the formula, we have
[tex]P_{m}=(\frac{5+7}{2},\frac{10+11 }{2} ,\frac{8+10}{2} )=(\frac{12}{2},\frac{21 }{2} ,\frac{18}{2} )\\P_{m}=(6,10.5,9)[/tex]
Therefore, the mid point of the segment PQ is [tex]P_{m}=(6,10.5,9)[/tex]
Answer:
^its C if ur too lazy to read the equation like me
Step-by-step explanation: